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ABSTRACT

A creep-rupture investigation was cnnducted on two (2) high temperaturz
alloys: a nickel-base a.e hardened alloy, Udimet 500, and a cobalt-base
alloy, 1.-60%., Creep-ruptu 2 tests were conducted over a range of rupt re
Mives from 1 - 35,000 hours at 1200, 1350, 1500, 1650 and 1800° F. Some
long time tests are in progress ana lives of approximately 50,000 hours

are expected.

The microstructure of all broken sp cimens was examined with various
techniques and an attempt was made to correlatz gpecific structural changes
with the mechanical properties.

Sewveral different parameter techniques were examined to determine their

utiiity in correlating and extrapolating creep and rupture dota.

The strength and the ! .mitations of rarametric extrapolation was extensively
discussed with the example of the Manson-Haford parameter for .which a

compuier program was avallable.
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I. INTRODUCTION

The ability to predict long time strength and deformation properties of
metals at elevated temperatures has been stiived for as lony as this
kind of engineering requirement has existed. Today the need to design
efficient structures for tens of thousands of hours' life utilizing the most

advanced alloys creates increased demands on extrapolation methods.

For the present investigation two (2) typical high temperature alloys --
Udimet 500, a nickel-base alloy and L.-605, a cobalt-base alloy -~ were
selected because they are representative of commonly used high temperature
alloys. The objective of the study i8 the appraisal of various techniques
for the extrapolation of creep and rupture data to times in excess of

30,000 hours.

For obvious reasons one would like to avoid long time testing. For
many years engineers have used graphical methods to predict long time
properties: The inost widel used technique is the straight line
extrapolation on a double logarithmic plot of stress sersus time. On
the cther hand, various time-temperature parameters have been used.
Such a relationship between stress, temperatire and time for rupture

(or a given amount >f creep deformation) can be regarded either strictly
as 4 mathematical tool or else from: a point of view of its metallurgical
interpretation. In the first case, one would simply attempt to arrange
data points in such a way that they permit extension of th« experimental
range. In the second case, one assumes that what occurs in a long
time at a low temperature will occur in a shorter time at a higher temperature.
However, if this equivalence is used in the derivation of parametric

expressions, the physics of the relation must be properly understood.



In the present investigation test data are being coliected covering
conditions of both short time and lonig time tests. The problem to be
solved here is, therefore, one of interpolation of data points. |

In addition, an attempt is made to combine and arrange data points' :
in a metallurgically meaningful way. This is done by the structural

analysis of all test specimens.

A further qur stion to be considefed is the reliability of test data and
in particular long time rupture and creep data. A good picture of the
scatter has been obtained for short time tests; however, the
experimental evaluation of scatter at long times would be quite an‘

‘ undertaking. ‘
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I. RESULIS AND DISCUSSIONS
1. ong Time Crea egt

Long time creep tests were continued for both Udimet 500 and L-605 at
1200 and 1500° F. The stresses were chosen on the basis of short
time rupture data and an attempt was made to arrive at rupture lives
between 10,000 and 50,000 hours. So far test times up to 35,000

hours have been reached.

The results are summarized in TABLE I which includes both data on
ruptured specimens and tests in progress. In Figures 1 - 10, the
stress-rupture and creep properties are graphically represented.
Whereas the stress-rupture curves fall rather consi3ziently on straight
lines on a log strecs-log time plot, the creep data show more scatter.
Nevertheless, this simple graphical method can at least give good
~ulde lines as to the expected times for a given amount of deformaticon.
Stress rupture properties of both L-605 and Udimet 500 can be
extrapolated graphically with good accuracy using the 1200 and 1500° ¥
stress rupture curves. The reliability of this appruach will be discussed
in some detail in another section of this report.

I'igures 11 ~ 14 include the creep curves of the long time tests at 1200
and 1500° F. The two materials exhibit very different plastic behaviors:
Udimet 500 shows no primary cre2p and very little secondary creep. The
material deforms very slowly at the heginning of the test and the creep
rate gradually increases until fr»sture. This type of time - deformation
characteristic is quite typical for tht*s alloy (and most age-hardened

nickel-basge alloys) under any conditi¢:: of temperature and stress.




L-605 on the other hand exhibits a substantial amount of primary creep
under all conditions. As can be seen in some cf the long time curves,
secondary creep may be reached only after 15,000 hours. Agailn, this
type of behavior i8 characteristic for a group of cobalt-base alloys of
this type. The different creep behaviors of the two alloys is8 alzo
illustratecd by the plots of log stress versus log time for a given gmall
amnunt of plastic deformation. Whereas the Udimet 500 points for 0.1%,
0.5% and 1% creep fall rather.nicely on straight lines (Figures 3, 4, 5),
the same is not true for the L-605 data (see Figures 8, 9, 10). In tle
latter case, these small amounts of plasiic deformation are all taken up by
primary creep, which apparently is much more prone to scatter.

2. Structural Observations During Long Time Creep .xposure

The structure of all broken specimens was examined on longitudinal
sections with both eleciron and light microscopy. Pictures were taken
at magnifications of 1000X and 15000X. The conditions for the preparation
of the sample surfaces are given in Table II. Emphasis was placed on
observations indicating a change in micro-constituents, appearance of
grain boundaries and crack initiation. It is thought that extrapolation
methods of any kind can only be applied rigorously if the structures, as
well as deformation and fracture mechanisms, are the same within the
range of extrapolation.

a. Udimet 500
The microstructural constituents of this alloy consist merely of a fi~¢
dispersion of the 7’ precipitate in the nickel-base matrix. Some chromium
carbide is present in the grain boudaries. During creep exposure at
1200° F, hardly any changes take place: The 7’ particles have the same
size over the whole range of test time (up to 18,000 hours). No agglomera-
tion of the chromium carbide particles can be noted. Cracking occurs along
the grain boundaries. (See Figures 15 - 28.)
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At 1500° F growth of both the 7’ and the grain boundary carbides can

be noticed. The observations are summarized 4 TABLE III. This growth
starts with test times in excess of a few hundred hours ar.d is very

marked after a few thcus~nd hours.
All cracking occurs along grain-boundaries. (See Figures 29 - 43)
b. L-605

In the as received condition L-605 is a single phase alloy (See Figure 44)
but precipitaticn starts in the grains and on giain boundaries with very
ashort test times and at a temperature as low as 1200° T (Figures 45 ~ 58).
The grain precipitate can be found mostly in twin planes and along specific
cryetallographic planes.

At 1500° F, precipitation of second phase particles ‘taris with very short
test tiries in both grains and grain-boundaries. With test durations over
100 nours, the second phase particles agglomera.e rapidly. An analysis

of the electrolytically separated residue shows that both Co,W and carbides
of the iMgC type are present. (See Figures 59 - 70).

Under all conditions, crackin: occwrrecd along grain-boundaries.

(Further comments con structural observa’ions wil! be found in the following
paragraph.)
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3. Extrapolation of Stress Rupture and Creep Data by
Parameter Techniques

a. General Considerations

With the exception of graphical methods, ali extrapolation techniques
att:mpt to define, in mathematical terms, a general description of the
variation of creep strength (rupture or specific amount of plastic
deformation) with stress and temperature. This is then specialized

for a particular material by using relatively short time data to generate
values for the constants and parameters, and the specialized equation
is then used to predict the long time properties of the material. This
concept 18 based on the assumption that all creep—rupﬁ:re or creep-
deformai!on data for a given material can be correlated to produce a
single "master—curve" wherein the stress (or log stress) is plotted
against a parameter involving a combination of time and temperature.
Extrapolation to long times can then be obtained from this curve, which
can presumably be constructed by using only short-time data. It i of
great importance to know how many tests have to be run and the minimum
test times required to obtain a reliable master curve.

The most widely used extrapolation techniques utilize a time~-temperature
parameter based on a rate equation of the type

rate = Ao exp (-B/T)

In terms of creep rupture properties this becomes:

t= A]_ exp (Bl/'n

where T is the abgolute temperatur., t, the rupture time and A 1 and Bl 1
are constants for a given stregs. In different techniques various '
assumptions are made regarding the variation of these constants with

strees.




1f we put the last equation in logarithnic form, we arrive at the Larson-
Miller parameter (Ref. 2).

Py =£(6) =T (log t +K,)

where Pt is the parameter and Kl a constant.

If on the other hand we suppose that B, is a constant and A, varies with

1 1
stresa, we have

O=f (O/) = tr exp (Bl/'I)
which 18 in essence the Dorn parameter (Ref. &, .
The Manson~Haford parameter (Ref. 4) departs somewhat from the other
parameters in that the iso-stress lines in a plot of log t. versus T are

assumed to be linear and to intersect at log ta and Ta’ One arrives then
at the following form:

p=f(0)=

If on the other hand the iso-~stress lines appear to je parallel, the
pzrameter is of the form:

¢=1ogtr-s'r (S = constant)

A further advance in the practical application of parametric methods was
the devel« pment of an objective least-squares method for the determination
of optimum values of the constants and thus avoiding the use of the
judgment on the part of the analyst.




b. Parametric Preseniation of Creep and Ruptire Data

All availakble data for rupture life and time for 1, 0.5 and 0.1% creep were
evaluated and plotted with the various parametric techniques. (For a complete
listing of all the short time test results see Reference 1.) The test temperatures
included 1200, 1350, 1500, 1650 and 1800° F. A computer program was
available for only the Manson-Haford parameter for an objective evaluation

of the data points. * For this reason and also because the same important
conclusions can be made on the basis of several cf the paran.etric plots, only

the Manson-Haford plots were used for the following discussion.

With the aid of the computer program (Fortran IV) creep deformation and
stress-rupture results were processed 'n the following way:

(1) Data for time %o rupture as well as time to 0.1, 0.5 and
1% creep were used throughout the evaluation.

(2) Several arbitrary cut-off points in test time were chosen,
namely, 200, 1000 and 10,000 hours. Test results were then processed with
the assumption that only results up to the particular test time were available.
In addition, sets of data with all available test results (including all long time
tests) were processed.

(3) The constants for the linear Manson-Haford parameter
were then determined with the aid of the computer program. For the deter—
mination of the optimum values the least-squares method was used.

(4) For those cases for which the value of Ta in the linear
Manson-Haford parameter as less than -3000, a modified parameter % was
used ( }/ = log t - 8T). The choice of this parameter would indicate that
{so-stress lines are paraliel on a temperature versus log time plot.

* The authors are {ndebted to the Lewis Research Centei for the processing
of the dataj; our thanks go in particular to Messrs. S. S. Manscn,
A. Mendelson and E. Roberts.
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(5) In &ll t.e plots data points for long time tests were
put in. These added test results had not been used for the original determination
of the constants of a particular plot, but the value of the parameter of those
results was determined using those same constantgs. The deviation of the long
time data points from the general course of the master curve gives an mdicjation
of the reliablility of the extrapolation. -

(6) The plots which include all data points give an indication
of the reliability of interpolation within the complete test time span.

A summary of the parameters and the constants 15 given in TABLES IV and V for
all the groups of data processed. It shows that the standard linear parameter
was used for all the creep results except for 0.1% plastic strain in L-605 where
the "parallel lines" parameter ,w = log t - ST was more suitable. Also, all
rupture results were presented on the basis of the second of the two parameters.

A discussion of the individual plots (Figures 71 - 98) 18 most conveniently
done in treating the twn materlals separately.

Udimet 500 (See Figures 71 - 85)

The major conclusions that can be drawn on the basis of the rupture plots are
the following:

(1) Within the temperature range of 1200 - 1650° F
extrapolation with the aid of a temperature/time parameter is as accurate Aas
thé reproducibility of tests under identical conditions of temperature ana stress.

(2) Extrapclau.n on the basis of 200 hours test time is
definitely less reilable than extrapolation with data peints up to 1000 or
10,009 houre. (The same can be found on the basis of the change of constant S.)

(3) 1800° F data should definitely not be used for extrapolation
purposes as the reproducibility is very poor at thiz temperatwre. At all lower :
temperatures Udimet 500 has a rather stable structure with a fine dispersion ;ﬁ {
of the 77" precipitate, whereas at higher temperatures agglomeration can
occur in an unpredictable manner which causes variable crack progress and,
therefore, wide scatter in rupture data. (See also Figures 15 - 43)
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The 1% and 0.5% creep data fall all on ratiier smocih ¢curves which would
indicats that creep (other than fraciure) 18 less styucture sensitive with his
type of an ailcy. fhe plots Indicate that extrapolation to long time data
points is possible svan with only chort time data {200 hours) on hand. It
ghr.uld be ncted, however, that the stress versus parameter curves based on
200 hours data are rather steep, which mcans that a small change in stress
does not result Ln much of a change in the value of the parameter. This, of
course, weakens the value of the extranolation. In all cases thr long time
data points fall well within the general scatter band of the resf of the data

points .

The picture looks s.mewhat different with the 0.1% creep data: the generxal
gcatt r of ali iosults i3 considerably increa.ed, but amazingly, the rellability
of extrapolation does rict seem to increase with longer time test data: the

constants log 4 aud Tp <o not ch.nge with the different sets of data points.

L- 605 (See Figwies 86 - 48)

The foliowing obgservations can be made on *he bacsis of the rupture data points:

(1) The bagis for the extrapoiation does riot change much with
increasing test dime.

(Z) The reproducibility of results is generaily better with
higher *te:mperature.

| (3) 4 kink in the masicr curve around a value of % = 1€

confirms the vge~hardening effect of the precipiiate observed in the micro-
siructure. 'I'hisl precipitadon was observed with long time tests at low
tamperatures and shorter times at intermediate tempeoratures. Within that
range of test conditions .'Lhe accuracy of a vrpinre life prediction o very poor,

a3 ¢a . us sean in Figures §€ - 89.

Extrapolation of 1% plastic strain ot hizh temperatures can be quite -eliable,
provided the master curve i8 determined on the basis of tests up to 1000 hours.
Bulow 1500° F, but particularly at 1350 and i200° F, the scatter is considerible
aue to the game stmoctural instability mentioned ir the discussiorn >f the rupture
data. It 15; therefore, very difficult to extrapolate long time data for this low

temperature ranga.

10
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I xtrapolation of lower plasiic strain data beoomes quite hazardous with this
alloy. Whereas 0.5% crecp values can be predicted within the high
temperature rahge on the basis of 1000 hour tests, not much can be done with

0.1% Gata. In looking at the results it should be kept in mind that none of

the plots shows any real. long time data for these small amcmms of creep.

The long time creep curves show cleaily that a specimen with a life expectancy
of over 50,000 hours may very well deform plastically by a considerable amount
during its early life time. It is, therefore, very difficult to establish a basis
for the extrapolation of long time data for very small amounts of creep if the
deformation pattern of the alloy includes a2 considerable amount of prirhazy

creep.

11
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II. SUMMARY AND CONCLUSIONS

The present evaluation of extrapolation technicues applied to cresp and
rupture data of two (2) superalloys leads to a number of impo tant observations:

(1) Extrapolation with the aid of a time/temperatiure parameter
can be as accurate and reliable as other methods (such as graphicei
extrapolation), provided one knows the pebavior of the material in question
and, therefore, is well aware of specific restrictions in the range of
applicability of the parametric techniques. This would preclude that fairly
long time testa have to be conducted over the whole temperature range for a
given type of a material if extrapolation to long time data is desired.

(2) A more severe restriction to the accuracy of extrapolation
i8 caused by a lack of reproducibility of data pnints even within one lot of a
given material. The scatter in test data varies with alloys and conditions,
particularly test temperature. It turns out that the uncertainty in extrapolation
caused by . lack of reproducibility of a data pciut can be as severe as the
uncertainty caused by -a change in test temperature.

(3) The results show that liicreased accuracy in extrapoiation
can be obtained by basing the determination of a parameter master curve on
longer time tests. In most instances 1000 hours appear to be a reasonable
cut~off time. With longer time tests the additional gains are not significant.
(Again, the remark made under (1) should be kept in mind; the general
behavior of the material should be known.)

(4) In many instances cbserved in the present investigation
creep data {ruch as 0.1, 0.5 and 1% plastic strain) can be extrapolated as
accurately as rupture data. An exception should be made for low strain data
(06.5% or lower) of alloys exhibiting large amounts of primary creep.

(8) The observaticns made during the present investigation
suggent the following procedure for a most successful approach to the
extrapolation of rupture and creep data of a specific material:

(a) The creep behavior of the material should be known
in general over the complete range of temperatures of interest, including all
temperature s to be included in short time tests.

12
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(b) A large number of data points should be collucted
with test time up to about 1009 hours. ) |

(c) A master curve can be btalned using the least-
squaras method for the determination of opiimum values of the constants.

(d The actual determination of a ~oint on the master
curve should be done on the basis of a statistical analysis of the data at
many different stress levels.

13
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TABLE II: n of Meta hi imens
Etchant for light Etchant for electron
Material microscopy microscopy
Udimet 500 Modified aqua regia Hydrochloric acid with
’ 4% HNO, and 2% H,_SO
3 2574
L-605 Vilellia's Reagent
modified with KMnO 4 Same asg above
electrolytically

Replica technique was used for electron micrographs: replicas were
shadowed with germanium.
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A. Test Temperature 1200° F: With rupture lives up to 17,800 hours
no appreciable changes in the size of the 7 precipitate

(diameter of particles .\ - .3 micron) or the thickrness of grain
boundary areas affected by grain-boundary sliding.

B. Test Temperati~= 1500° F;

Approximate
average diameter
Stress, Rupture life of ¥’ particles,
psi hours microns
as received - .1- .3
80,000 1.7 1- .3
72,000 5.0 2- .4
60,000 10.5 .2 - .4
55,000 33 .2- .4
45,000 159.6 2 - .4
42,500 193.0 2= .4
39,000 421.2 2- .4
35,000 441.6 .2- .6
32,500 548.8 .2~ .6
30,000 1,255.4 2= .6
26,000 2,401.1 .2- .6
23,000 7 146.6 2-1
19,000 14,773 2=-1
18,000 12,880 21
16,500 24,733 2-1

17

Approximate averaqge

width of grain
boundary area,
m _Jong
.3

.5-1

5-1

.5-1
5 -1 |
5 -2 |
S5 -2 ;
.5 -2 :
5~ 2

.5-2
5-2 i
.5-2

.5~-2

-2

-2

-2
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.
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TABLE IV:

Rupture Data

All data

Data up to 10,009 hrs.
Data up to 1,000 hrs.
Data up to 200 hrs.

1% Pla in

All data

Data up to 10,000 hrs.
Data up to 1,000 hrs.
Data up to 200 hrs.

0.5% Plastic Strain

Al] data

Data up to 10,006 hrs.
Data up to 1,000 hrs.
Data up to 200 hrs.

0.1% Plastic Strain
All data

Data up to 10,000 hrs.
Data up to 1,000 hrs.
Data up to 200 hrse.

Parameter

¢=loq.t-8‘1'

P

T-T

“log t - log T,

T- T,

P‘logt-logTA

=T-TA
1ogt-logTA

18

-0.01226
-0.01231
-0.01153
-0.01070

4

Udimet 500; Constants for Manson-Haford Parameter

s

200

200
200
1000

400

400
400

400

700
700

log TA

19.099

19.119
19.303
35.054

16.528

16.438
16.966
21.529

12.260

12.274
12.341
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TABLE V: L-605; Constants for Manson-Haford Parameter
Parameter S Ty

Rupture Data

All data Y =logt-ST -0.01058 -

Data up to 10,000 hrs. " -0.01068 -

Data up to 1,000 hrs. " -3.01007 -

Data up to 200 hrs.

1% Plagtic Strain
All data

Data up to 10,000 hrs.
Data up to 1,000 hrs.
Data up to 200 hrs.

0.5% Plastic Strain

All data

Data up to 10,000 hrs.
Data up to 1,000 hrs.
Data up to 200 hrs.

0,1% Plastic Strain

All data

Data up to 10,000 hrs.
Data up to 1,000 hrs.
Data ip to 200 hrs.

T"TA

P=loqt—IogT;

3é=1oqt-s'r

19

pres—

-0.009774 -

- 200
- 200
- 200
- 700
- 260
- 700
- 1000
-0.005835 -
~0.005809 ~

14.938

14.727
14.677
9.582

11.331

8.725
6.054
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Tota! Plgstic Strain-%

16

14

12

10

v E]

Udimet 500 - IS00°F
Specimen Stress -psi Hours Elong.%
- A 19,000 14,773 12.9
s* i8,000 12,880 (3.0
» c* 16,500 24,733 6.7
D° 15,000 16,700 0.480
E° 13,500 16,700 0. 302
B xSpecimcn ruptured: Total elongatior was
measured at room temperature.
— Ogpeciman in test: Eiongation is total plastic
strain ¢3 mecsured in tost.
8
B T ?fA
-
poe
C
-
b=
1 Ellllll’lJILiL

5 10 15 20 25
Time ~ Thousands of Hours

Figure 12. Long time creep curves for Udimet 500 at 1500°F.
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Blactron Micrograph 15,000X

Fogure 1L5. Micrcstractures of Udamet 5N0. Ag received,
aged condilion.



ESNEL S

Electron Micrograph
Figure 16.

15,000X

Microstructures of Udimet 500 specimen after

teast at 12009 F and 140,000 psi. Rupture
life, 8.0 hours.
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Alectron Microgxaph 15,000X

Figurae 17. Hicrostructures of Udimat 509 specimen after
test at 12000 Fr and 130,000 psi. Rupture
lifas, 18.3 hours.
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Electxon Micrograph 15, 000X

Figure 18, Microstructures of Udimet 300 specimen after
tast at 12009 F and 122,000 psi. Rupture
life 37.6 hours.



Elactron Microgra h

15,000x
Figure 19. Microstructures of Udimat 500 3paciman after

test at 1200° r and 117,500 psi. Rupture
life 37.0 hours.



Photomicrograph 1000X

_s*_,"' "
e .‘.&f‘\ :

Electron Micrograph 15,000X

Figure 20. Microstructures of Udimet 500 specime: after
test at 12009 F and 110,000 pgi. Rupture
life 171.% Rhours.
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Electron Micrograph 15,000X

Figure 21. Microstructures of Udimet 500 speciven after
test at 12009 ® and 103,000 pai. Rupture
Jife 590.& hours.
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Elsctron Microgxaph 15,000X

¥igure 22. MNicrostructures of Udimet 500 specimen attey
test at 12C0° F anil 100,000 psgi. Rupture
life 427.4 hours.
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Photomicrograph

Electron Micrograph 15,000X

Figurae 23. Microstructures of Udimet 500 specimen aftex
tast at 12009 P and 95,000 psi. Rupture
lifa 1396.3 houxs,
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15,000X

El.ctron Micrograph
Figure 24. Microstructurces of Udimet 500 specimen after
test at 12000 F and 90,000 psi. Rupture

life 442%.9 hours,
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Electron Micrograph 15,000%
Figure 25.

Nicrosiructures of Udimet 500 specimen after
test ai 1200% F and 86,000 psi. Rupiure
life 4041.5 hours.
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Blaciron Nicroyeoonh
Miceostructuraes of hiloet 506 srecinen alier

H‘j,‘a el 2& i
pupture
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Electron Micrograph 15,000X

Figure 27, Microstructuras of Udimet 500 specimen after

cast at 12002 F and 77,000 psi. Rupture
life 9152.8 hours.
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Elactron wicvograph 15,000x

Pigure 23. Mioruscructures of Udiwat 500 speciman aftey
tant at 12009 7 and 74,0600 pei, Rupture
“1fe 17,840 houys.
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Elaectron Micragraph 15,000X

Figure 29. Microstructures of Udimet S900 sperimen after
¢ test at 15090 F and 80,000 psi. Rupture
; life 1.7 hours,




Flectron Micrograph 15,000X

Figure 30. Microstructures of idimet 500 spacimen after

tast st 15009 F and 72,000 psi. Rapture
life £.0 hours.
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Electron Microgriph 15,000x

Figure 31,

Microstructure~ of Udimet 500 specimen after
teat at 1500° F and 60,000 psi. Rupturs
life 10.5 hcars.
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Photomicrograph 1000X

Electron MNicrograph 15,000x

“igure 32. Microstructures of Udimet 500 specimen after

tast at 1500° P and 55,000 psi. Rupture
life 33.0 hours.
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Electron Micrograph 15,000X

Figure 33.

Microstructures of Udimet 500 specimen after
test at 15009 ¥ and 45,000 psi. Rupture
iife 159.6 hours.
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Photomicrograph 1000X

Elactron
Figure 34.

Micrograph 15,000x

Microstructures of Udimet 500 cpecimen after
test at 1500° F and 42,500 psi. Rupture
1ife 193.9 hours.
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Elec tron Micrograph 15,000x

Figure 35. Microstructures of Udimet 500 specimen after
test at 15009 F and 39,000 psi. Rupture
lifm 421.2 houxs.
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Photomicrograph 1000X%

Electron Micrograph 15,000X

igure 36. Mcrostiucturas of Udiamet 500 spaciman af Lex
togl at 1500° F and 35,000 psi. dupturg
life 441.6 hours.
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Fleactron Microgxaph 15,000x

Figuzw 37.

Microstractures of Udimer 500 specimen after
Lest at 1500° F and 32,500 pasi. Rupture
++%a 548.8 hours.
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Electrorn Micrograph 15,000X

Figure 38, Microstructures of Udimet 500 specimen after
teat at 1500° F and 30,000 psi. Rupture
life 1255.4 hourr.

- S g . X AR L TTPT U TEN N U
NP A 0 NS S S A i e




1000X

Photomicrograph

15,000X
Microstructures of Udimet 500 specimen after
teat at 1500° F and 26,000 psi.

Electron Micrograph

Figure 39.

Rupturas

.1 hours.
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Electron Micrograph
Figure 40.

15,000X

Microstructures of Udimet 500 specimen after
test at 1500° P and 23,000 psi. Rupture
life 7146.6 hours.
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Eleactron Micrograph 15,000

Figure 41. Microstructures of Udimet 500 specimen after
test at 1500° P and 19,000 psi. Rupture
life 14,773 hours.
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Electron Micrcgraph 15,000X

Figure 42. Microstructures of Udimet 500 specimen after

test at 15000 F and 16,000 psi. Rupture
life 12,880 hours.
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Electron Micrograph 15,000X

Figure 43. Microstructures of Udimat 500 specimen after
test at 1500° P and 16,500 psi. Ruptura
life 24,733 hours.
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Photomicrograph 1000Xx
Electron Micrograph 15,000%
Figure 44. Microstructures of 1L-605. Ag received
3 condition.
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Photomicrograph 1000X

Electron Micreograph 15,000X 1

Figure 45. Microstructures of L-605 specimen after test
at 1200° P and 65,000 psi. Rupture life 5.1
hours. f

-
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Photomicrograph

. .."' - -

15,000X

Electron Micrcgraph
Microstructures of L~605 specimen after test
at 1200° P and 62,500 psi. Rupturxe life 8.5

hours.

Figure 46.
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Photomicrograph 1000Xx

Electron Micrograph 15,00¢Cx
Figure 47. Nicrostructures of L-605 gpecimen after test

at 12009 F and 58,000 psi. Rupture life 8.8
hours.,
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Photomicrograph 1000x

Electrcn Micrograph 15,000X

Figure 48. Nicrostructures of L~605 specimen after test
at 1200° F and 54,000 psi. Rupture life
23.1 hours.
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Photomicrograpn 1900x

~4

Electron Micrograph 15,000X

Figure 49.

Microstructures of L-605 specimen after test
at 1200° F and 51,000 pgi. Rupture life
64 4 hours,
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Photomicrograph 1000X

Eleztron Micrograph 15,000%
Figure 50,

Nicrostructures of L-605 specimen after test
at 1200° F and 50,000 psi. Rupture life
1.6 hours.
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Elactron Micrograph

1000x

15,000x

Figure 51. Microstructures of L-605 specimen after test

at 1200° F and 45,000 psi.
136.9 hours.

Rupture life
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Photonicrograph 1000X

Electron t4crograph 15,000

Pigure 52. l}icrostructures of L-605 specimen after test
a. 12000 F and 42,500 psi. Rupture life
20¢.1 hours.
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1000Xx

Electron Micrograph 15,000X

Figure 53.

Microstructures of L-605 spacimen after test
at 1200° r and 41,000 psi. Rupture life
822.8 hours.
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Photomicrograph 1000X

Electron Microgxaph 15,000x
Figure 54. Microstructuras of L-605 specimen after test

at 1200° r and 37,500 psi. Rupture life
1693.6 hours. !
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Electron Micrograph 15,000X

Figure 55. iicrostructures of L-605 specimen after test
at 12009 F and 35,000 psi. Rupture life
3445.5 hours.
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Electron Micrograph 15,000X

Figure 56.

Microstructures of L-605 specimen after test '
at 1200° F and 31,000 psi. Rupture life
3294.0 hours.
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Electron Micrograph 15,000x

Figure 57.

Microstructures of L-605 specimen after test
at 1200° F and 29,500 psi. Rupture life
21,720 hours.
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Electron Micrograph 15,000%
Figure 58.

Microstructures of L-605 specimen after test
at 1200° P and 28,000 psi. Rupture life
10,192 hours.
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Electron Micrograph 15,000X

Figure 59.

Microstructurgs of L-605 specimen after test
at 1500° F and 37,500 psi. Rupture life 1.7
hours.
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Electron Micrograph 15,000x

Figure 60.

Microstructures of L-605 spacimen after test
at 1500° F and 35,000 psi. Rupturec life 2.7
hours.
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Electron Micrograph
Figura 61.

16¢0X

15,000X

Microstrusivures of 1L-605 specimen after test

at 1500° F and 30,000 psi. Rupture life
13.8 hours
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Eluctron Nicrograph 15,000x

Figure 62. Microstructures cf 1.-605 specimen after test
at 1560° F and 27,500 psi. Rupture life
25.7 hours.
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1000X

Photomicrograph

e

gt

15,000

Microstructures of L-605 gpecimen after test

at 1500° F and 25,000 psi.
96.5 hours.

Electron Microgyaph

Figure 63.

Rupture life
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Electron Micrograph 15,000x

[ ‘ Figure 64. Microstructures of L-605 spacimen after test

at 1500° F and 22,00 psi. Rupture life
! 146.0 hours.
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Electron Micrograph 1%5,000X

Figure 65.

Microstructures of L~605 szpecimen after test
at 15000 Fr and 21,500 psi. Rupture life
301.0 honurs.
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Electron Micrograph
Figure 66.

15,000Xx

Microstructures of L-605 spacimen after test

at 1500° F and 18,500 psi. Rupture life
748.3 hours.
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1000X

Photomicrograph

15,000X

Microstructures of L-605 specimen after test

Electron Micrograph

Figure 67.

Rupture life

at 1500° F and 15,000 psi.

3883.8 hours.
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Electron Micrograph 15,000X
Figure 68.

Nicrostructures of L~605 specimen after test
at 1500° F and 13,000 psi. Rupture life
11,077.5 hours.
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Elactron Micrograph 15,000x

Figure 69.

F S R ——"

Microstructures of L-605 specimen after test
at 1500° F and 11,500 psi. Rupture life
13,018 hours.
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Electron Micrograph 15,000X

Figure 70.

Microstructures of L-605 specimen after test
at 1.00° F and 10,500 psi. Rupture life
34,600 hours.
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Figure 71 Manson—Haford piot, Udmat 500, rupture.
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Figure 72: WMonson— Haford plot, Udimet 300, rupture.
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Figure 74: Manson— Haferd plot, Udimet 500,ruplurs.
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94



Stress - psi j0~3

1 i 1 l [ ] ¥ ] 1 1 ¥
Udimet 500
200+ -
88 1.0% Plastic Strain
100 8% 9800 hrs. log t, = 19.303
- TA= 200 —
- : 18,800 hrs. 7
" 10,900 hrs. ( § -
- X -
’ Y "
3 LE?‘ 64CT wrs.
B 2950 es. 15,200 hrs. -
vy
10 |— ?g —
L A - 1200 °F v -
— o - 1350 °F =
B X - 1500 °F v .
~ O -1650°F v n
- V - 1800 °F —
Data points up to 1000 hrs.
2 n ] 1 L 1 1 L i 1 |
-40 -60 -80 -100 -120
. T-TA
logt-logty

Figure 76: Manson—Hz:ord plot, Udimet 500, 1.0% plastic strain.
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Figure 77: Manson—Haford pict, Udimet 500,1.0% plastic strain.
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Figure 78: Manson—Heaford plot, Udimet 500,1.0% plastic strain.
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Figure 79: Manson—Haforc¢ piot, Udimet 500, 0.5 % plastic strain.
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Figure 80' Manson— Haford piot, Udimat 500,0.5% plestic strain.
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Figure 817 Manson—Haford plot, Udimet
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500,0.5% plastic strain.
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Figure 82 Manson—Haford plot, Udimet 500,0,.5 % plastic strain.
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Figure 83: Manson—Haford piot, Udimet 500, 0.1% plastic strain. ; |
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Figure 84: Manson—Haford plot, Udimet 500, O.1% plastic strain.
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Figure 85° Manson—Haford plot,Udimes 5CQ, 0.i% plastic strain.
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Figure 86. Manson—Haford plot, L-6085, rupture.
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Figure 88: Manson—Haford plot, L-6035, rupture.
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Figure 90: Manson—Haford piot, L-605, 1.0 % plastic strain .
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Figure 91X Manson—Haford piot, L.-603,1.C% plastic strain.
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Figure 92° Manson-Haford plot, L-6086,1.0% plastic strain.
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Figure 931 Manson—Haford plot, L—605,1.0% plastic strain.
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Figure 94: Haison—-Haford plct, L- 605, C.5% plastic strain,
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Figure 95 Hanson-Haford plot, L—605, 0.5% plastic strain,
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Figure 96: Hanson-Hetord piot, L— 605, 0.5 % ylastic strain.
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